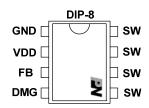


带峰值功率输出模式超低待机功耗准谐振交直流转换芯片

概述

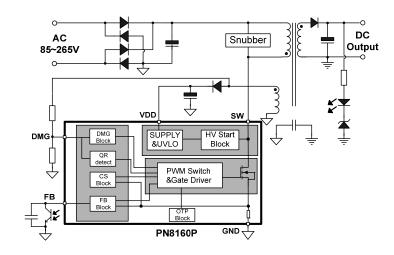
PN8160P内部集成了电流模式控制器和功率MOSFET,专用于高性能、外围元器件精简的交直流转换开关电源。通过Peak-mode、QR-PWM、QR-PFM、Burst-mode的多种模式混合调制技术和特殊器件低功耗结构技术实现了超低的待机功耗、全电压范围下的最佳效率,Peak-mode为需要瞬时峰值功率输出的反激式开关电源系统提供了一个先进的高性价比实现平台。频率调制技术和SoftDriver技术充分保证良好的EMI表现。同时该芯片提供了极为全面和性能优异的智能化保护功能,包括输出过压保护、过流保护、过载保护、软启动功能等。


产品特征

- 内置650V高雪崩能力的功率MOSFET
- Peak-mode实现峰值功率输出
- QR-PWM、QR-PFM、Burst-mode混合模式提高效率
- 外围精简,无需启动电阻及CS检测电阻
- 高低压脚位两侧排列提高安全性
- 内置高压启动,空载待机功耗 < 50 mW @230VAC
- 改善EMI的频率调制技术
- 供电电压8-40V,适合宽输出电压应用
- 内置线电压补偿和斜坡补偿
- 优异全面的保护功能
 - ◆ 过温保护 (OTP)
 - ◆ 输出过压保护
 - ◆ 过流保护 (OCP)
 - ◆ 输出开/短路保护
 - ◆ 专利的DMG电阻开/短路保护(Latch模式)
 - 次级整流管短路保护
 - ◆ 过载保护(OLP)

应用领域

- 待机电源
- 开放式开关电源
- 适配器


封装/订购信息

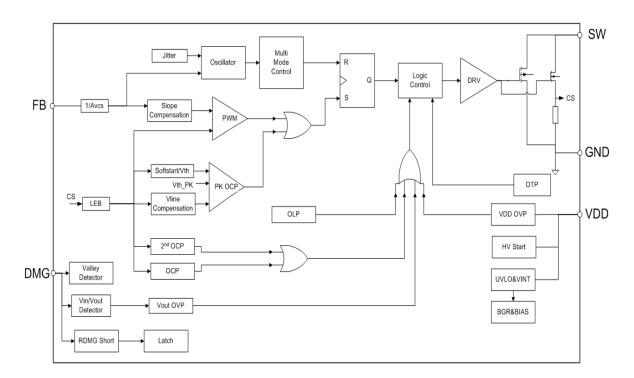
) T MA (1) TT	#1.4 1+	峰值输出功率	
订购代码	封装	90~265V _{AC}	
PN8160PNEC-T1	DIP8	48W	
PN8160PNEC-T1B	DIP8	60W	

注: 峰值输出功率是在环境温度 45℃的开放式应用情形下测试。

典型应用

管脚定义

管脚名	管脚标号	管脚功能描述
GND	1	地。
VDD	2	工作电压输入引脚。
FB	3	反馈输入引脚。
DMG	4	去磁引脚,通过电阻分压采样输出电压和输入电压。
SW	5,6,7,8	高压 MOSFET 漏极脚


典型功率

产品型号	输入电压	稳态功率(1)	峰值功率(2)	
PN8160P-T1	$90\text{-}265\mathrm{V}_{\mathrm{AC}}$	30W	48W	
PN8160P-T1B	90-265V _{AC}	36W	60W	

备注:

- 1. 稳态输出功率是在环境温度 45℃的开放式应用情形下测试的结果。
- 2. 峰值输出功率是在环境温度 45℃的开放式应用情形下测试的结果。

功能框图

Rev. 1804

2018年4月

极限工作范围

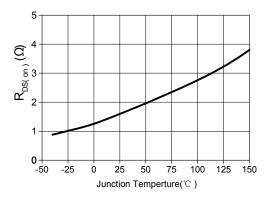
VDD 脚耐压0.3~45V	管脚焊接温度 (10秒)260℃
FB, CS, DMG 脚耐压0.3~5V	封装热阻 Rθ _{JC} (DIP-8)
SW 脚耐压0.3~650V	人体模式 ESD 能力 ⁽¹⁾ (HBM)±4kV
结工作温度范围40~150℃	漏极脉冲电流(T _{pulse} =100us)5A
存储温度范围55~150℃	

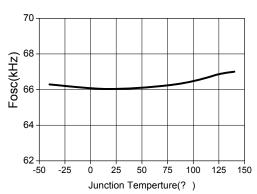
备注: 1. 产品委托第三方严格按照芯片级ESD标准(ESDA/JEDEC JDS-001-2014)中的测试方式和流程进行测试。

电气特性

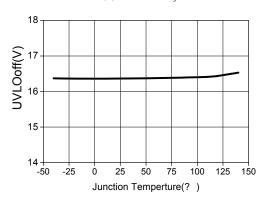
(T_A = 25°C, 除非另有说明)

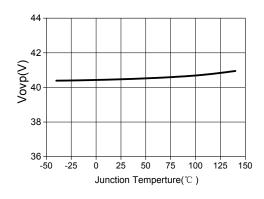
参数	符号	条件	最小值	典型值	最大值	单位
功率部分			•			
功率管耐压	BVDSS	I _{SW} =250uA	650	690		V
关态漏电流	I_{OFF}	$V_{sw} = 650V$			100	μΑ
导通电阻	R _{DS(on)}	$I_{SW} = 0.8A, T_J = 25$ °C		1.6		Ω
VDD电压部分						
VDD启动阈值电压	UVLOoff		15.5	16.5	17.5	V
VDD欠压保护阈值电压	UVLOon		7	8	9	V
VDD过压保护电压	OVP		38	40	43	V
VDD Holdup电压	V_{Holdup}	FB=1V		10		V
VDD重启阈值电压	V _{Restart}			4		V
VDD电流部分						
启动管充电电流	I _{VDD_CH}			-1		mA
开关态工作电流	I_{VDD0}	VFB=3.5V	1	2.5	3.5	mA
间歇态工作电流	I_{VDD1}	VFB=0.5V	0.4	0.8	1.5	mA
保护态工作电流	I _{VDD_Fault}		0.3	0.5	1	mA
震荡器部分						
开关频率	Fosc		60	65	70	kHz
Peak-mode 工作最高频率	Fosc_PK			130		kHz
间歇态工作频率	Fosc_BM		22	25	28	kHz
FB检测部分						
FB 开路电压	V_{FB}		4.8	5.1	5.4	V
FB 短路电流	I_{FB_SHORT}			0.2		mA
最大占空比	Dmax		70	80	90	%
进入Peak-mode 阈值电压	$V_{FB_PK_L}$			3.5		V
退出 Peak-mode 阈值电压	$V_{FB_PK_H}$			4.0		V
进入降频模式阈值电压	$V_{FB_PFM_H}$			1.9		V
退出降频模式阈值电压	$V_{FB_PFM_L}$			2.1		V
进入间歇模式阈值电压	$V_{FB_BM_L}$			1.15		V

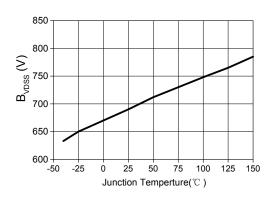

PN8160P

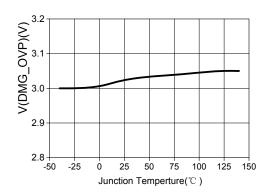

参数	符号	条件	最小值	典型值	最大值	单位
退出间歇模式阈值电压	$V_{FB_BM_H}$			1.25		V
过载保护阈值电压	Vth_OLP		4.1	4.4	4.7	V
过载保护	Td_OLP			15		ms
电流检测部分						
软启动时间	Tss			3.2		ms
前沿消隐时间	Tleb			400		ns
最大峰值电流 PN8160P-T1	ID_PK		1.26	1.33	1.4	A
最大峰值电流 PN8160P-T1B	ID_PK		1.45	1.55	1.65	A
过流保护阈值 PN8160P-T1	ID_OCP			0.9		A
过流保护阈值 PN8160P-T1B	ID_OCP			1.0		A
过流保护延迟时间	Td_OCP			13		S
Burst-mode 峰值电流	ID_BM			0.27		A
次级整流短路保护阈值 电压	VDSP			1.1		V
次级整流短路保护 延迟时间	Td_DSP			7		cycles
DMG检测部分	1		•			
过压保护阈值电压	V_{DMG_OVP}		2.7	3	3.3	V
DMG 过压保护延迟时间	Td_DOVP			7		Cycles
最大时钟开启等待时间	Thold			5		us
斜坡补偿最小占空比	Duty_Slope	Fosc=65kHZ		35		%
最大开启时间	Ton_max			12		us
过温保护部分						
过温保护温度	T_{SD}		130	145		°C
过温保护回差	T _{HYST}			30		°C

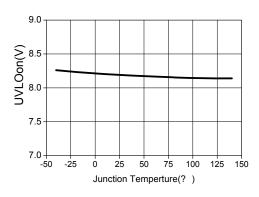
Chipown


特性曲线




(c) F_{OSC} vs T_j


(e) UVLOoff vs T_i


(g) OVP vs T_i

(b) B_{VDSS} vs T_j

(d) V_{DMG_OVP} vs T_j

(f) UVLOon vs T_i

2018年4月

功能描述

1. 启动

在启动阶段,内部高压启动管提供1mA电流对 外部VDD电容进行充电。当VDD电压达到16.5V,芯 片开始工作; 高压启动管停止对 V_{DD} 电容充电。启 动过程结束后,变压器辅助绕组对V_{DD}电容提供能 量。

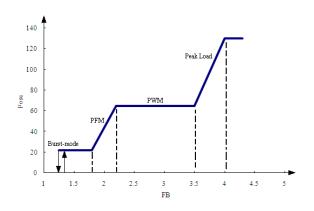
2. 软启动

启动阶段,漏极的最大峰值电流限制逐步的提 高; 可以大大减小器件的应力, 防止变压器饱和。 软启动时间典型值为3.2ms。

3. 输出驱动

PN8160P采用优化的图腾柱结构驱动技术,通 过合理的输出驱动能力以及死区时间,得到较好的 EMI特性和较低损耗。

4. 多模式工作


PN8160P 集成了 Peak-mode、 OR-PWM、 OR-PFM、Burst-mode的多种模式混合调制技术, 实现了超低的待机功耗、全电压范围下的最佳效率 以及全电压范围峰值功率输出。

满载时, PN8160P工作在PWM模式, 振荡频 率固定,此时工作频率为65kHz。

PN8160P通过检测FB脚电压,在中载,轻载和 空载条件下降低开关频率以提高轻载效率。当FB 脚电压小于V_{FB PFM L} (典型1.9V), 芯片进入即 QR-PFM模式,开关频率随负载降低而降低,直至 最小频率25kHz。

极轻载时, PN8160P进入Burst-mode模式以减 小待机功耗。当负载减轻,反馈电压减小; 当FB 脚电压小于V_{FB BM L} (典型1.15V),芯片进入间歇 工作模式,功率管关断。当FB脚超过V_{FB BM H}时, 开关管再次导通。

PN8160P同时提供峰值功率工作模式,保证全 电压范围内峰值电流输出。 当负载增加, 反馈电压 增大; 当FB脚电压大于V_{FB PK L}, 芯片进入 Peak-mode, 工作频率开始增大; 随着输入电压的 降低,工作频率增大越明显,最高工作频率可以达 到130kHz。

5. 谷底开通

PN8160P根据开关管波形计算系统励磁电感 与寄生电容振荡周期, 在DCM模式下实现精确谷 底开通,提高转换效率。

6. 斜坡补偿

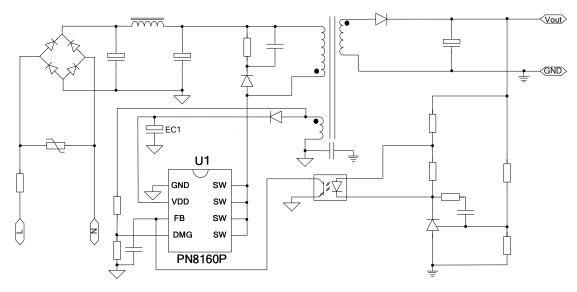
PN8160P采用峰值电流控制,内置斜坡补偿功 能,通过将电压锯齿信号叠加在采样电流信号上, 以改善系统闭环稳定性。

7. 过流保护

当功率管的峰值电流超过预设定值时,过流保 护单元开始计时,当OCP持续时间达到13s,过流 保护触发, 开关模式停止。

8. 过载保护

负载电流超过预设定值时,系统会进入过载保 护;在异常情况下,可对系统进行保护。当VEB电 压超过4.4V,经过固定15ms的延迟时间,开关模式 停止。

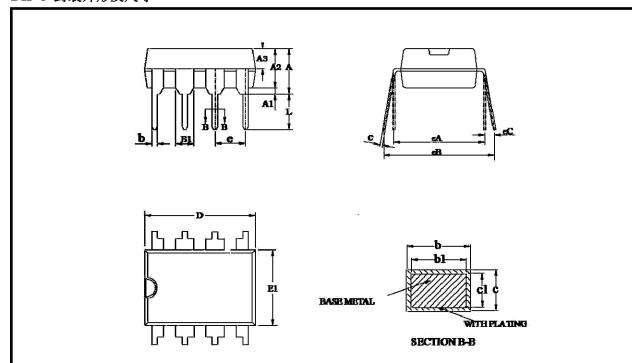

9. 过温保护

功率MOSFET和控制芯片集成在一起,使得控 制电路更易于检测MOSFET的温度。当温度超过 145℃,芯片进入过温保护状态。

Rev.1804 2018年4月

典型应用电路

外围参数选择参考


为了更好体现 PN8160P 的性能,请务必遵守以下规则:

- 1. VDD 电容 EC1 应放置在距离 VDD 引脚和 GND 引脚最近的地方。
- 2. PN8160P GND 引脚到输入电解电容地的走线尽量短而粗。

<u>封装信息</u>

DIP-8 封装外形及尺寸

尺寸 符号	最小值(mm)	最大值(mm)	尺寸 符号	最小值(mm)	最大值(mm)
A	3.60	4.00	c1	0.23	0.27
A1	0.51		D	9.05	9.45
A2	3.00	3.40	E1	6.15	6.55
A3	1.55	1.65	e	2.54BSC	
b	0.44	0.53	e A	7.62BSC	
b1	0.43	0.48	e B	7.62	9.30
B1	1.52	BSC	e C	0.00	0.84
с	0.24	0.32	L	3.00	

表层丝印	封装	
PN8160P	DID 0	
YWWXXXXX	DIP-8	

备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码

备注:

- 1. 此制图可以不经通知进行调整;
- 2. 器件本体尺寸不含模具飞边;

Rev.1804 2018年4月

重要声明

无锡芯朋微电子股份有限公司保留更改规格的权利, 恕不另行通知。无锡芯朋微电子股份有限公司对任何将其产品用于特殊目的的行为不承担任何责任, 无锡芯朋微电子股份有限公司没有为用于特定目的产品提供使用和应用支持的义务。无锡芯朋微电子股份有限公司不会转让其专利许可以及任何其他的相关许可权利。

Rev.1804 2018年4月