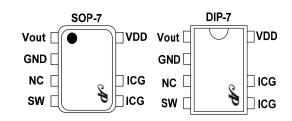


基于高压同步整流架构固定5V输出的非隔离交直流转换芯片

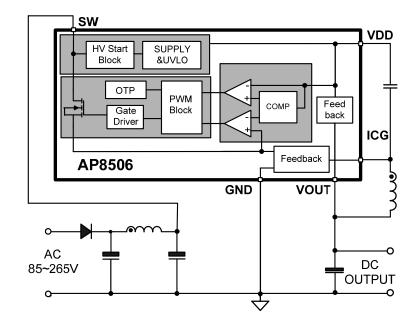
<u>概述</u>

AP8506基于高压同步整流架构,集成PFM控制器以及650V高可靠性MOSFET,用于外围元器件极精简的小功率非隔离开关电源。AP8506内置650V高压启动,实现系统快速启动、超低待机功能。该芯片提供了完整的智能化保护功能,包括过流保护,欠压保护,过温保护。另外AP8506具有优异的EMI特性。


产品特征

- 内置650V高可靠性MOSFET
- 先进的高压同步整流架构
- 内置高压启动
- 适用于Buck、Buck-Boost架构
- 输出电压固定为5V
- 半封闭式稳态输出电流能力300mA @230VAC
- 改善EMI的降频调制技术
- 优异的负载调整率和工作效率
- 全面的保护功能
 - ◆ 过流保护(OCP)
 - ◆ 欠压保护(UVLO)
 - ◆ 过温保护(OTP)

应用领域


- 非隔离辅助电源
- 家电
- 智能家居

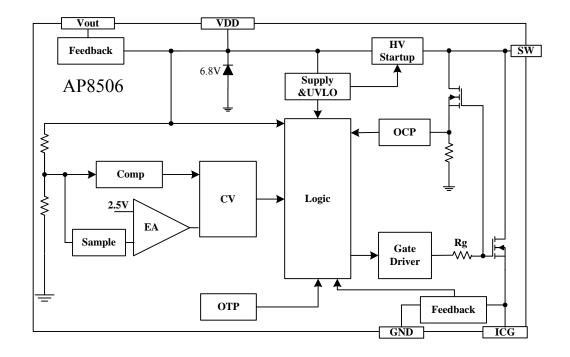
封装/订购信息

订购代码	封装
AP8506SSC-R1	SOP-7
AP8506NSC-T1	DIP-7

典型应用

管脚定义

管脚名	管脚标号	管脚功能描述		
Vout	1	系统输出		
GND	2	系统地		
NC	3	空脚		
SW	4	高压MOSFET漏极脚		
ICG	5,6	芯片内部地		
VDD	7	芯片电源脚		


典型功率

产品型号	输入电压	稳态功率(1)	峰值功率(2)
AP8506	85-265V _{AC}	(5V300mA)	(5V350mA)

备注:

- 1. 稳态功率在半封闭式 75℃ 环境下测试(Buck/Buck-boost 应用),持续时间大于 2 小时。
- 2. 峰值功率在半封闭式 75°C 环境下测试(Buck/Buck-boost 应用), 持续时间大于 1min。

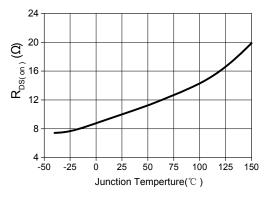
功能框图

Rev.1903 2019年3月

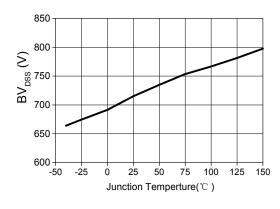
极限工作范围

VDD 脚耐压0.3~	10V	封装热阻 Rθ _{JC}	(SOP-7)	80°C/W
SW,GND,Vout 脚耐压0.3~6	00V	封装热阻 Rθ _{JC}	(DIP-7)	40°C/W
结工作温度范围40~15	50°C	人体模式 ESD	能力 ⁽¹⁾ (HBM)	±4kV
存储温度范围55~1:	50°C	漏极脉冲电流(T _{pulse} =100us)	1.5A
管脚焊接温度(10秒) 20	50°C			

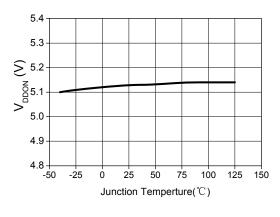
备注: 1. 产品委托第三方严格按照芯片级ESD标准(JEDEC JS-001-2014)中的测试方式和流程进行测试。

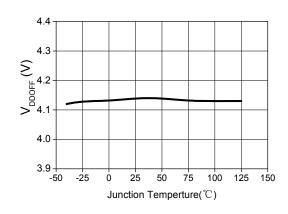

电气特性

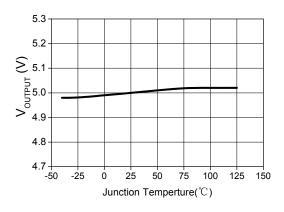
(T_A = 25°C, V_{DD}=5V, 除非另有说明)


参数	符号	条件	最小值	典型值	最大值	单位
功率部分			<u>.</u>			
功率管耐压	BVDSS	I _{SW} =250uA	650	730		V
关态漏电流	I_{OFF}	$V_{sw} = 650V$			10	μΑ
导通电阻	R _{DS(on)}	$I_{sw} = 300 \text{mA}, T_{J} = 25 ^{\circ}\text{C}$		10		Ω
VDD电压部分						
VDD启动阈值电压	V_{DDon}		4.9	5.2	5.5	V
VDD欠压保护阈值电压	V_{DDoff}		3.9	4.2	4.5	V
VDD回差	V_{DDhys}			1		V
VDD钳位保护电压	$V_{DDclamp}$		6.3	6.7		V
输出电压	V _{OUTPUT}		4.9	5.0	5.1	V
VDD电流部分						
启动管充电电流	I_{DDch}	V _{DD} =4V		2		mA
静态电流	I_{DD0}	V _{DD} =4V		400		uA
工作电流	I_{DD1}	f _s =40KHz		1.7		mA
内部电流检测						
尖峰电流限流值	I _{limit}		410	450	490	mA
过流检测前沿消隐时间	T_{LEB}			300		ns
反馈输入						
最小关断时间	T_{offmin}		19	21	23	μ_{S}
最大开启时间	T _{onmax}			9		μ_{S}
过温保护						
过温保护温度	T_{SD}		135	150		°C
过温保护回差	T_{HYST}			35		°C

Rev.1903 2019年3月


特性曲线


(a) R_{DS(on)} vs T_j


(b) BV_{DSS} vs T_j

(c) V_{DDon} vs T_j

(d) V_{DDoff} vs T_j

(e) V_{OUTPUT} vs T_j

2019年3月

Rev. 1903

功能描述

AP8506集成PFM控制器及650V高可靠性MOSFET,用于外围元器件极精简的小功率非隔离开关电源,输出电压固定为5V。AP8506内置高压启动与自供电模块,实现系统快速启动、超低待机。该芯片提供了完整的智能化保护功能,包括欠压保护,过温保护。另外AP8506的降频调制技术有助于改善EMI特性。

1. 高压启动

在启动阶段,内部高压启动管提供2mA电流对外部VDD电容进行充电;当VDD电压达到VDDon,芯片开始工作,高压启动管停止对VDD电容充电;当VDD电压降低到VDDoff,芯片继续工作,但内部高压启动管再次提供2mA电流对外部VDD电容进行充电。

2. 恒压工作模式

芯片通过VDD管脚对输出进行电压采样,VDD电压经过内部分压电阻分压得到采样电压 V_{RF} 。当 V_{RF} 低于内部基准电压 V_{REF} ,芯片开启集成的高压功率管,对储能电感充电,当电感电流达到内部基准电流 I_{PEAK} ,芯片关闭集成的高压功率管,由系统二极管对储能电感续流。图2-1和图2-2分别给出连续模式(CCM)和非连续模式(DCM)下系统关键节点工作波形。同时芯片集成负载补偿功能,可以提高恒压精度,实现较好的负载调整率。

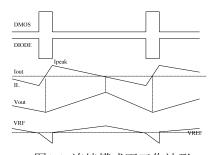


图1-1 连续模式下工作波形

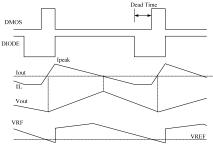


图1-2 非连续模式下工作波形

3. 软启动

为了避免非隔离系统启动阶段因进入深度 CCM模式,带来较大电流尖峰。AP8506设置软启动功能,在启动前8ms,最高开关频率降低为33%, 在启动8ms到12ms,最高开关频率降低为66%。同时芯片设计较小的LEB时间(300ns),以降低LEB时间内能量大小,以避免系统启动时的高电流尖峰。

4. 智能升降频功能

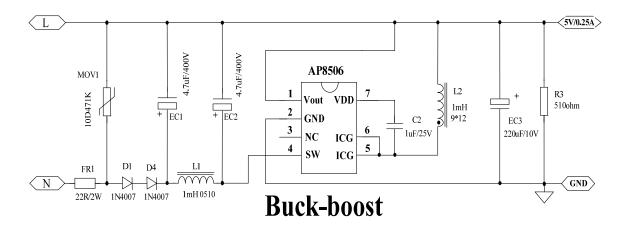
芯片工作于PFM模式,即固定IPEAK通过调节开关频率来适应负载变化。为了避免轻载时芯片产生音频噪声,当芯片内部检测到开关频率低于18KHz时立即将IPEAK减小25%,以提高开关频率,IPEAK最多可以减小4次;另一方面为了避免芯片工作于深度CCM,当内部检测到芯片工作频率高于40KHz,立即将IPEAK恢复为Ilimit。

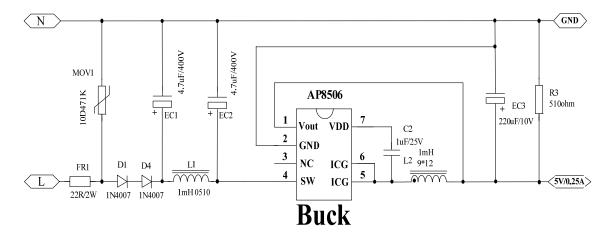
5. 智能保护功能

AP8506集成全面的保护功能,包括:过流保护、VDD欠压保护和过温保护功能,并且这些保护具有自恢复模式。

过流保护-----芯片导通时,内部对导通电流进行实时检测。当检测电流大于设定值时立即关闭功率管。为了避免导通瞬间误发生关断,在前沿消隐时间内芯片屏蔽关断信号。

VDD 欠压保护------当芯片 VDD 电压低于 V_{DDoff} , 芯片重新启动。另外芯片异常自恢复的时间可通过 VDD 电容调整, VDD 电容越大, 自恢复时间越长。

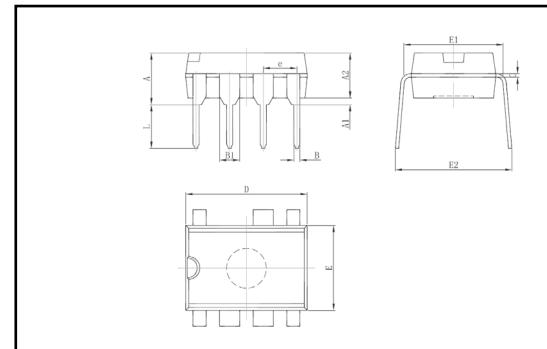

过温保护-----当芯片结温超过150℃,芯片进入过温保护状态,输出关闭,当芯片结温低于115℃,芯片重新启动。


Rev 1903

2019年3月

典型应用电路

外围参数选择参考

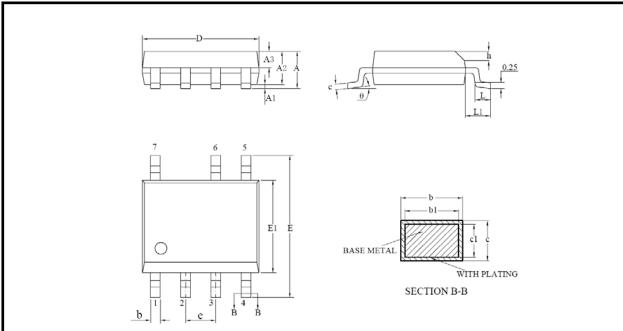

为了更好体现 AP8506 的性能,请务必遵守以下规则:

1. VDD 电容 C2 尽可能近的靠近 IC。

<u>封装信息</u>

DIP-7 封装外形及尺寸

尺寸符号	最小值(mm)	最大值(mm)	尺寸 符号	最小值(mm)	最大值(mm)
A	3.710	4.310	D	9.000	9.400
A1	0.510		Е	6.200	6.600
A2	3.200	3.600	E1	7.320	7.920
В	0.380	0.570	e	2.540	OBSC
B1	1.524BSC		L	3.000	3.600
С	C 0.204		E2	8.400	9.000


表层丝印	封装
AP8506	DIR 7
YWWXXXXX	DIP-7

备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码

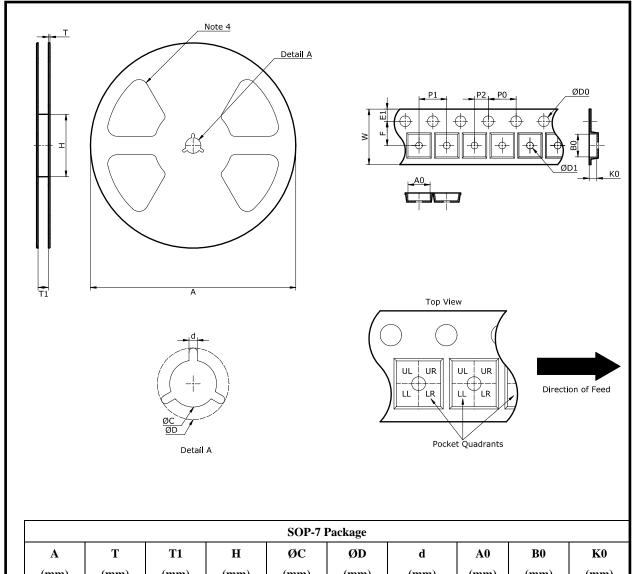
备注:

- 1. 此制图可以不经通知进行调整;
- 2. 器件本体尺寸不含模具飞边;

SOP-7 封装外形及尺寸

尺寸 符号	最小(mm)	正常(mm)	最大(mm)	尺寸 符号	最小(mm)	正常(mm)	最大(mm)
A			1.75	D	4.70	4.90	5.10
A1	0.10	0.15	0.225	E	5.80	6.00	6.20
A2	1.30	1.40	1.50	E1	3.70	3.90	4.10
A3	0.60	0.65	0.70	e	1.27(BSC)		
b	0.39		0.48	h	0.25	_	0.50
b1	0.38	0.41	0.43	L	0.50	_	0.80
С	0.21	_	0.26	L1	1.05(BSC)		
c1	0.19	0.20	0.21	θ	0°	_	8°

表层丝印	封装	
AP8506	COR 7	
YWWXXXXX	SOP-7	


备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码

备注:

- 1. 此制图可以不经通知进行调整;
- 2. 器件本体尺寸不含模具飞边;

编带及卷轴信息

	SOP-7 Package								
A	T	T1	Н	ØС	ØD	d	A 0	В0	K0
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
330±1.0	3	12.4	100±0.5	12.00	17.70	2.00	6.60	5.2±0.1	1.9±0.1
330±1.0	+1/-0	+1/-0		+0.5/-0.2	±0.40	+0.5/-0.2	±0.1	5.2±0.1	1.9±0.1
W	F	E1	P0	P1	P2	ØD0	ØD1	Di- 1 O	44
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Pin 1 Quadrant	
12.00	5 50+0 1	1.75	4.00	8.0	2.0	1.5	1.55	T	TL
±0.1 5.50±0.1	±0.10	±0.10	±0.1	±0.1	+0.1/-0	±0.05	U	L	

备注:

- 1. 此制图可以不经通知进行调整;
- 2. 所有尺寸是毫米公制的标称值;
- 3. 此制图并非按严格比例,且仅供参考。客户可联系芯朋销售代表获得更多细节;
- 4. 此处举例仅供参考。

重要声明

无锡芯朋微电子股份有限公司保留更改规格的权利, 恕不另行通知。无锡芯朋微电子股份有限公司对任何将其产品用于特殊目的的行为不承担任何责任, 无锡芯朋微电子股份有限公司没有为用于特定目的产品提供使用和应用支持的义务。无锡芯朋微电子股份有限公司不会转让其专利许可以及任何其他的相关许可权利。